Tender Selection Criteria:

Criteria		Weight (%)
1.	 Supplier's quality assurance procedures and relevant experience a. Prior experience with cryogenics, micromanipulators, and particularly, TFS autoloader mechanics are very important. b. Professional design and project management experience in delivering real-world solutions is essential in addition to a meticulous and consultative approach to design planning. 	30
2.	 Cost effectiveness of the design and potential for reproduction a. The proposed solution will be evaluated with regards to not only the total cost and time of delivery but also the cost effectiveness of the sustained operation of the system. b. Solutions utilising commodity parts and modules will be preferred over bespoke innovations such that fabrication may be repeated to allow distribution/transfer to other research infrastructures. 	10
3.	 Ease of use and interoperability with facility controls and databases a. Simple and intuitive controls are important for ensuring the usefulness of the design. b. In order to ensure the future adoption of the solution at DLS and other research infrastructures, it is important that the robot can interface with central control and LIMS systems. 	20
4.	 Compactness, automation, and recovery durations a. A compact, desktop, solution is preferred over an extended and complex solution. b. Preference will be given to maximally automated and standalone designs that simplify operation and minimise manual intervention during start-up, operation, and interventions. 	20
5.	Reliability, robustness of design, and fault tolerance a. The solution should be capable of reliable operation without undue maintenance and possess sufficient robustness to tolerate faults.	20